Numerical invariants of rank-2 arithmetically Buchsbaum sheaves

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinantal Schemes and Buchsbaum-Rim Sheaves

A natural and efficient method for producing numerous examples of interesting schemes is to consider the vanishing locus of the minors of a homogeneous polynomial matrix. If the matrix satisfies certain genericity conditions then the resulting schemes have a number of well described properties. These objects have been studied in both a classical context and a modern context and go by the name o...

متن کامل

Buchsbaum-rim Sheaves and Their Multiple Sections

This paper begins by introducing and characterizing Buchsbaum-Rim sheaves on Z = ProjR where R is a graded Gorenstein K-algebra. They are reflexive sheaves arising as the sheafification of kernels of sufficiently general maps between free R-modules. Then we study multiple sections of a Buchsbaum-Rim sheaf Bφ, i.e, we consider morphisms ψ : P → Bφ of sheaves on Z dropping rank in the expected co...

متن کامل

L 2 -invariants and Rank Metric

We introduce a notion of rank completion for bi-modules over a finite tracial von Neumann algebra. We show that the functor of rank completion is exact and that the category of complete modules is abelian with enough projective objects. This leads to interesting computations in the L 2-homology for tracial algebras. As an application, we also give a new proof of a Theorem of Gaboriau on invaria...

متن کامل

A Special Case of the Buchsbaum-eisenbud-horrocks Rank Conjecture

The Buchsbaum-Eisenbud-Horrocks rank conjecture proposes lower bounds for the Betti numbers of a graded module M based on the codimension of M . We prove a special case of this conjecture via Boij-Söderberg theory. More specifically, we show that the conjecture holds for graded modules where the regularity of M is small relative to the minimal degree of a first syzygy of M . Our approach also y...

متن کامل

Rank 2 Arithmetically Cohen-macaulay Bundles on a Nonsingular Cubic Surface

Rank 2 indecomposable arithmetically Cohen-Macaulay bundles E on a nonsingular cubic surface X in P are classified, by means of the possible forms taken by the minimal graded free resolution of E over P. The admissible values of the Chern classes of E are listed and the vanishing locus of a general section of E is studied. Properties of E such as slope (semi) stability and simplicity are invest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1989

ISSN: 0022-4049

DOI: 10.1016/0022-4049(89)90153-9